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Percolation in Strongly Correlated Systems: 
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We derive a number of new results for correlated nearest neighbor site per- 
colation on Z'( We show in particular that in three dimensions the strongly 
correlated massless harmonic crystal, i.e., the Gaussian random field with mean 
zero and covariance -A, has a nontrivial percolation behavior: sites on which 
S., ~> 17 percolate if and only if h < h, with 0 ~ h, < ~. This provides the first 
rigorous example of a percolation transition in a system with infinite suscep- 
tibility. 

KEY WORDS: Percolation; weak and strong correlation; symmetry 
breaking; massless harmonic crystal. 

1. I N T R O D U C T I O N  

Percolat ion is a fascinating problem relevant for a variety of systems. 

Combin ing  not ions  of geometry and randomness ,  it is easy to formulate 
and, in general, rather hard to analyze. (1 6) In this paper  we try to answer 

some quest ions in the theory of percolat ion for "strongly coupled" systems. 

Consider  a r a n d o m  field, i.e., a set {Sx; x ~ Z  a} of r andom variables, 
with values in R. The jo in t  d is t r ibut ion P of these variables will in the 

concrete examples discussed in this paper  always be a Gibbs  state of some 
statistical mechanical  system. Define, for each h ~ R, the r a n d o m  set 

E(h )  = - { x s Z d :  S x ) h }  
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sometimes called the excursion set. We ask whether this set E(h) contains 
infinite connected components. 

We can translate this question into the usual percolation problem by 
defining the occupation variables 

p x ( h ) -  1 if Sx>~h 
(1.1) 

- 0  if S x < h  

The probability measure .P on these variables {px(h)} is the one induced 
by P. The question is then, do typical configurations S contain infinite 
connected sets of occupied sites? In contrast with the independent case 
(Bernoulli site percolation), where the only relevant parameter is the den- 
sity 

Prob(x is occupied) = (p.~(h)) - p(h) (1.2) 

the complete distribution P will be relevant in general. The motivation of 
the present work is to understand better how interactions influence 
percolation (see also Ref. 7). 

We define, as usual, the percolation probability: P ~ ( h ) - P r o b ( t h e  
origin belongs to an infinite connected set of occupied sites). Clearly P~(h)  
is nonincreasing in h and we can define the critical level 

h, . -  Sup{h e R: P~(h)  > 0} (1.3) 

above which there is no percolation and below which there is percolation. 
The associated critical density is (px(hc. ) )=p(hc)=-pc.  We say that there 
is a percolation transition if Ih,.L < oo or, equivalently, 0 < Pc. < 1, 

The problem was considered in general by Molchanov and 
Stepanov, (s) who constructed in arbitrary dimensions examples of fields 
with good symmetry and ergodic properties for which there is no 
percolation transition (h,.= +oo). While their examples are somewhat 
artificial, they raise questions about the intuitive feeling that all "natural" 
fields, in d >  1, should have a nontrivial critical density. 

Molchanov and Stepanov also gave a criterion implying the presence 
of a percolation transition. Intuitively, their criterion should apply to 
"weakly" correlated random fields. While it is not always easy to check 
whether a given system satisfies their criterion (see, however, Theorem 1), 
it is interesting to consider examples where it certainly fails. One such 
example is the massless harmonic crystal with mean zero, i.e., 

( S x )  = 0  

Its correlations (for d >  2) decay as 

( SxS~)  .,~ 1~ix - y]d-- 2 
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and in particular, the "susceptibility" 

Z= ~ <SoSx)  = o o  (1.4) 
x E  Z d 

This shows that we are dealing with a strongly correlated random field. 
While it is rather easy to show (using an idea of Russo) that h~ ~> 0 (i.e., 
p,~ ~< 1/2), it is less obvious that h~. < oe. It is a priori conceivable that, due 
to strong correlations in the system, infinite connected sets exist where 
S.~ ~> h, no matter how large h is. However, using ideas of potential theory, 
we show that this is not the case for d-- 3, i.e., hc < or. 

In Section 3 we state precisely our results. First we show that for 
distributions satisfying the GHS inequality, the Molchanov-Stepanov 
criterion (81 is satisfied whenever the "A-susceptibility" 

1 
ZA--~ ~, ( S x S y )  (1.5) 

.'r .l' ~ A 

is uniformly bounded in A. Next, we combine an idea of Russo (6) and 
correlation inequalities to show the presence of percolation for one- and 
two-component spin systems in their multiple-phase region. Finally, we 
state our results for the harmonic crystal. Section 4 is devoted to the proofs 
of these results and Section 5 to a discussion of some possible extensions. 

2. NOTATIONS AND DEFINITIONS 

We consider a cubic lattice Z a in d > 1 dimensions. Its elements are the 
sites x=(xl , . . . ,  Xd) with x i e Z .  For a point x E Z  d, the length of x (= i t s  
distance from the origin 0 of the lattice) is Ix[ -= Z~ a [xi[, where x~ is the ith 
component of x, Two sites x, y ~ Z a are nearest neighbors if their distance 
dx-yl=l.  

If K c Z d, we define the outer boundary of K, 

c?K~ {x e Zd\K: ~y ~ K, Ix -- y[ = 1 } 

and the inner boundary of K, 

aK=~ {x e K: 9y ~ ga\K,  r x -  yl = 1} 

(2.1) 

We put K =  gKva K. The volume IK] of K is its cardinality, i.e., the number 
of sites x ~ K. The set K is finite if IK[ < oe. A set K c  Z d is connected if any 
two points x, y ~ K can be joined by a path of nearest neighbors in K. 

The configuration space 1"2 is the set of sequences S=(Sx)x~z~ of 
random variables Sx~R.  The restriction of ~ e f 2  to a region K c Z  d is 

(2.2) 
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written SK= ( S x ) x ~  and is not to be confused with the sum SK=-Y'.K Sx. 
Given a configuration ~, a connected set K c Z ~ is a cluster if p.~ ~ t, for all 
x e K ,  and p x = 0 ,  for all xeOK,  where p.~ was defined in (1.1). 

The measure P is defined on the a-algebra of Borel sets inherited by 
the product topology in /2  = R ze. The indicator function of an event E, i.e., 
a particular subset of ~,  is denoted by I(E). The probability of E is P(E) = 
Prob(E) = ( I ( E ) ) ,  where ( . )  is the expectation value of �9 with respect to 
the measure P. We assume, unless otherwise stated, that ( S ~ ) = 0 .  

3. RESULTS 

3.1. Weak ly  Correlated Random Fields: The 
M o l c h a n o v - S t e p a n o v  Cri ter ion 

Molchanov and Stepanov ~8~ prove the following general criterion for 
percolation: if the probability of a set being occupied (empty) decays 
exponentially with the volume of that set, and the rate of decay is large 
enough, then percolation does not (does) occur. More precisely: 

C r i t e r i o n  (s). Let A ~ Z  J be an arbitrary but finite connected set. 
Suppose that 

(PA(h) )  -- Prob(Sx/> h, Vx e A) ~< c exp(-c~lAh) (3.1) 

where c~ and c are independent of A, with c~=~(h)]" +oc as hl" +oo, and 
c = c ( h ) < v o  (not necessarily uniformly bounded in h). Then h,.< +oo. 
Similarly, if 

Prob(Sx < h, VxEA)<<.c' exp(--c~' IAI) 

with c', ~' as in (3.1), then h,.> --oo. 

The proof of this criterion is similar to the "Peierls argument" for 
independent percolation. 

To see when this criterion is satisfied, consider first the situation where 
the conditional probability, 

Prob(Sx >~ h jany configuration in Za\x)  <~ e -~ (3.2) 

with :~ = e(h) large uniformly in the configuration outside x. Then clearly 
(3.1) holds. However, (3.2) is usually difficult to check, except when the 
probability of Sx >~ h is small and the events Sx >~ h for different sites x are 
weakly correlated. Examples of such cases include (besides independent 
percolation) infinite-volume Gibbs states with respect to a superstable and 
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regular interaction (see Ref. 9 for the definitions). In that case the 
probability estimates of Ruelle are independent of the shape of the set A. 

Another way to verify (3.1) is to observe that 

Prob(Sx >7 h, Yx  E A ) <, Prob(SA >~ h IA[ ) (3.3) 

which allows the use of large-deviation estimates when available for 
arbitrary connected sets. Relation (3.3) can also be combined with GHS 
(or Gaussian (m/) inequalities to obtain the following result: define for t/> 0 
the expectation values 

( .  5 '=  [ ( e x p ( t S A )  ) ] - i  ( .  exp(tSA)) 

T h e o r e m  1. Let M 2 = (Sx) ' .  If the GHS inequality 

( (Sx - M2) (Sy  - M'v)(S  z - M ; )  ) t  <~ 0 (3.4) 

holds for all x, y, z e A, and, if the A-susceptibility 

1 
Z <sxsy> 

x ,y~A 

is bounded uniformly in A, then he< +oo (or pc>O). 

Theorem 1 shows that boundedness of the susceptibility may be taken, 
in our context, as an indicator that the random field is weakly correlated. 

3.2. A Genera l i za t ion  of  Russo's A r g u m e n t  

In Lemma 1 of Ref. 6, Russo characterized the pure phases of the 
nearest neighbor Ising model (in d =  2) in terms of the existence of infinite 
clusters: if a Gibbs state has no infinite ( + )  cluster, with probability one, 
then it is the ( - )  state. This implies percolation [of ( + )  spins in the ( + )  
state, for all temperatures below Tc] in a situation where the arguments of 
the previous subsection do not apply: a Peierls-type argument works only 
at low enough temperature. 

Russo's argument should extend to many models where several phases 
coexist. Indeed, phase coexistence means that the spin at the origin "feels" 
the boundary conditions "at infinity." However, if no percolation takes 
place, then the spin at the origin will be screened off from infinity by the 
occurrence (with probability one) of some surface surrounding the origin 
where all sites are empty. 

We give here an abstract but somewhat weaker version of Russo's 
argument, which applies to more general models in their multiple-phase 
region. 
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We first define C c Z d as a contour surrounding the origin if there exists 
a finite connected set K containing the origin such that C = 0K, or C = {0}, 
in which case we still write C = OK, K =  ~ .  Remark that K is uniquely 
defined: the interior of C = I n t  C=K, if C--OK. For C any contour 
surrounding the origin, let C< denote the event that all sites on C are 
empty: 

C< -= {Se  12: px(h) = 0, Vx e C} (3.5) 

We call C a <-contour  if C< occurs. 
Suppose that the random field has the one-step Markov property, ( ~  

e.g., P is a Gibbs state for a Hamiltonian with nearest neighbor interac- 
tions. Then the contour C splits the interior of C from the exterior of C: the 
probability measure in the interior of C is completely determined by the 
configurations Sc  on the contour C, independent of the state in the exterior 
of C. Let {- )sc be the expectation value with respect to the measure in the 
interior of the contour C, obtained from the original measure P by 
imposing the boundary condition S.~, x E C, on C, i.e., the probability 
distribution, conditioned on Sc. 

T h e o r e m  2. Let P satisfy the one-step Markov property. If 
there exists a bounded function f : R ~ R ,  and a 6 ~ R  such that the 
unconditioned expectation satisfies 

{f(So)) > • (3.6) 

while the expectation conditioned on an empty contour, Sx < h on C, (3.5), 
satisfies 

(f(So))~c<~6, for all contours C surrounding the origin (3.7) 

then, P~(h) > O. 

Remark. This result is weaker than Russo's result: it only gives per- 
colation of S~ >~ h, but otherwise does not imply anything about the state 
( - ) .  However, in order to apply it, we are free to pick any function f 
satisfying (3.6) and (3.7). The following corollaries will be proven in 
Section 4. 

C o r o l l a r y  1. Take a general one-component spin model with 
nearest neighbor ferromagnetic interactions, 

- H =  ~ SxSy, SxeR (3.8) 
(x.v) 

and an even single-spin measure 2(Sx) (suitably decaying for large Sx so 
that the model is well defined). ~ There will be percolation of sites x where 
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S~ >~ 0 in any Gibbs state where (sign So> > 0. Such states always occur at 
low enough temperatures, in d~>2, provided 2(S)#fi(S), by Wells' 
inequality. (~2) 

Corol lary 2. Consider now one-component models that are 
invariant under shifts 

- H =  ~ g , (S , -Sy)  (3.9) 
<xy> 

where ~ is an even and convex function. S~ e R or Z and the single-spin 
measure is flat; 6 ( t ) =  It[ and S ~ z Z  is the SOS model; 4,(t)=�89 2 and 
Sxe R is the harmonic crystal (Section 3.3), etc. 

Let P be a Gibbs state with zero boundary conditions, d > 3 ,  
r  = c~t2+ v(t), where c~ > 0 and v is convex, are sufficient conditions for 
the existence of such a state. (~z) There will be percolation of sites x where 
Sx~> - / ,  for any l>O. 

Corollary 3. Consider a two-component model: 

- a , =  y~ s~.s , ,  (3.10) 
< .,~v > 

where S,  e R 2, Sx = (r ,  cos G ,  rx sin ~bd, and a rotation-invariant single 
spin measure 2(S~) = 2(rx). There is percolation of sites x where cos G >i 0, 
in any Gibbs state where (cos ~bo> > 0. These occur at low temperatures if 
d~>3. (12 ,14)  

3.3. Strongly Correlated Gaussian Fields: The Massless 
Harmonic Crystal 

The massless harmonic crystal in Z d ( d >  3) is the Gaussian random 
field with mean zero. 

and covariances 

<&> =0 

< & s y >  = c,y = - ( z t - 1 ) x  ~ 

- A  is the lattice Laplacian on 12(zd), i.e., 

- Af(x)=- 2 d [ f ( x ) - ~  
x - - y = l  

for a function f(x),  x e Z d. 

(3.11) 

fly)] (3.~2) 
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For d =  3 there are strictly positive constants el and c% such that 

:q/Lx- yl <~%,<~2/Ix-yl, I x - y j  50 (3.13) 

This field corresponds to the infinite-volume Gibbs state with respect to the 
formal Hamiltonian, 

H(S) = 1_ ~ (Sx - Sv) 2 (3.14) 
n n  

where the sum is over pairs of nearest neighbors. The simpler massive case 
is obtained by adding a term 

m 2 
TZS x 

x 

to (3.14). Since any sum of jointly Gaussian random variables is Gaussian, 
one has the following bound(lS): for h > 0, 

-<[ )~ )1/21,7--=77..., ~exp ( h2 Pr~ Vx~A)<~Pr~ 2 )~ /  

(3.15) 

with )~ given by (1.5). Now, for m >0 ,  the A-susceptibility ZA is bounded 
uniformly in A, so one can satisfy the criterion (3.1) of Section 3.1 (see also 
Theorem 2.4 in Ref. 8). Thus, - oo < hc < oo for any m > 0. 

In the massless case, however, it is not a priori obvious that hc < oo : 
let A = {1, 2,..., n} be a line segment of length n in Z3; then, using (3.13), 
one has 

ZA ~ n  ~ ~=1 i x - y  ~ l ~  (3.16) 
x r  

Therefore, the bound (3.15) is useless. Moreover, it follows from Lemma 1 
in Ref. 16 that the Molchanov-Stepanov criterion is not satisfied in the 
massless case. Nevertheless, by a different method explained below, we can 
prove the following. 

T h e o r e m  3. F o r d = 3 , 0 ~ < h  c<oo.  

The lower bound is an immediate consequence of Corollary 2 in 
Section 3.2. The upper bound is more subtle. We indicate here the main 
ideas of the proof. First we observe that the "average magnetization" in a 
box A, [AI = L  3, defined by 

1 1 
IAL $3 ~ ~---~ ~ S~ (3.17) 
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is zero up to very small fluctuations (of order ILL). We want to show that 
this will contradict the existence of an infinite cluster where Sx ~> h ~> 1. 
Indeed, fix an infinite cluster C and condition on the event that S~ ~> h, for 
all x ~ C, or, taking the "worst case," that Sx = h on C. Then, it follows 
from potential theory (to which the correlations in the massless crystal are 
intimately related; see Ref. 17 and Lemma 2 in Section 4) that 

(Sx)S=h on C)  =h,  for all x in Z 3 (3.18) 

This only uses that C is an infinite, connected set in d =  3. The heuristic 
argument behind (3.18) is the following: first we observe that for a given C, 

( S  x I S =  h on C ) = h  Prob(a random walker starting at x will visit C) 

Now, in d = 3, an infinite, connected set will be visited with probability one 
(easily proven for C a coordinate axis, where hitting C is equivalent to 
visiting the origin for a two-dimensional random walk, which is well 
known to occur with probability one. ~17t The extension to general sets C is 
due to It(3 and McKean (18'171 and is the content of Lemma 2 in Section 4). 
Given this fact, we would like to argue that if there is any C where S~ ~> h, 
it would tend to lift the typical level of the other spins. In particular, it 
"pushes up" the S),, yeA,  and this would contradict the fact that (l /A) 
SA ~ 0. More precisely, if we can show that 

((l/A) SAI~ infinite connected C)  = h 

then Prob(3 infinite connected C ) <  1, and P~(h)= O. 
Of course this argument is deceitfully simple. Actually, if it worked, it 

would imply absence of percolation for all h > 0, i.e., p,. = 1/2, which we do 
not expect to be true. (~9/ The point is that the different events {S~>~h, 
u e C) for different C's are not disjoint. To obtain disjoint events, which is 
done in Lemma 1 (Section 4), one has to consider the largest set, contain- 
ing the origin, on which Sx ~> h. However, this event implicitly contains the 
information that S), < h for y on the boundary of C. One has to use the 
additional fact that, if h is large enough, then these S~, y ~ 0C, are still 
large because the harmonic crystal does not like to develop large gradients. 
This is essentially the content of Lemma 3 (Section 4). Putting the three 
lemma's together, one obtains a contradiction between the fact that (1/1A I) 
SA ~ 0 and the existence of an infinite, connected cluster of occupied sites, 
i.e., a proof of the upper bound in Theorem 3. 

4. P R O O F S  

In this section, we shall usually not indicate explicitly the h depen- 
dence of various quantities. 
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Proof  of  Theorem 1. Let fA(t)=-(1/)AI) log<exp(tSa)). By a 
Chebyshev inequality we have for all t >~ 0, 

Prob(S,~>~hlAI)<<. exp{IA] [--ht  + fA(t)]} (4.1) 

Since f'A(O)= 0, we get, by Taylor's theorem with remainder 

fa(t) = t 2 (1 - s) f '](st) ds 

By (3.4), f 'A(t)is concave on [0, +oo), so that 

t t  f A(st)-~. f](O) = Z,~ 

Hence, the upper bound in (4.1) becomes 

exp[ lAl(-ht+�89 

The conclusion follows from the percolation criteria (3.1) and (3.3), since 
;~ is assumed to be uniformly bounded. 

Proof  of  T h e o r e m  2. For any family C1 ..... C, of contours 
surrounding the origin, one defines the maximal contour 

max{C1,.. . ,C,}-~0(01 In tCi ;  

Let A N be a cube around the origin of size N. Let 

C< ax= {Se~"  C is the maximal <-contour 

of S surrounding the origin 

which is contained in An} 

and define 

M-M(A,,,)--- U 
C-in  A N 

This last union runs over disjoint events and clearly any S r C< for some 
C c A  N also belongs to M(AN). Therefore, if ~z~r ,  the complement of M, 
there is no <-contour surrounding the origin, i.e., there exists a cluster 
connecting the origin to 6An. We shall show that Prob( .~)> 0 uniformly 
in N, which impties percolation. 

Conditioning on C~ ax involves only the configuration on C and its 
exterior. In particular, for variables in the interior of C, this conditional 
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expectation reduces to conditioning on the configurations in Sc~ C<. The 
hypothesis of Theorem 2 states that there exists f(So) such that 

(f(So)l C m"~ > ~ 6 (4.2) 

and that 

<f(So) > = ~ (f(So)lC~ a~ > Prob(C max) + <f(So) I !1~r Prob(_M) = 6 + 
C 

(4.3) 

with ~1>0. We now observe that ~]c Prob(C '~x)~ < 1 since the C'~ ~ are 
disjoint events, so that, by using (4.2) and (4.3), we get the inequality 

+ ~/~< ~ + <f(S0)I M )  P r o b ( ~ )  

6 + r/~< 6 + const - Prob(kSr 

where the positive const >~f(S), for all S, bounds the function f. This 
completes the proof. 

Proof  of  t h e  Coro l l a r i e s .  Corollary 1. Take h = 0 ,  ~ = 0 ,  and 
f(S) = sign S in Theorem 2. By the F K G  inequality,(2~ 

(f(So) >~c <--. (f(So) >&.=o=O 

The last equality follows from symmetry. From Theorem 2, we thus get 
percolation of sites where S x ~<0 in any Gibbs state where (sign So> > 0. 

Corollary 2. For any l > 0 ,  take h =  - / ,  6 = 0 ,  andf(S)=sign(S+l) 
in Theorem 2. Then, by symmetry, (f(So) > = Prob(So ~ [ - / ,  ID > 0. This 
strict inequality can be proven using the DLR equality. (9) The measure 
satisfies the F K G  inequalities by the convexity of ~b, (21) and is invariant, up 
to a change in the boundary condition, under a uniform shift of all the 
spins Sx. Hence, after a change of variables S ' =  S +/ ,  the same argument 
as in Corollary 1 above applies: if S~ ~< - I  on C, then <f(So)>gc<....O. By 
Theorem 2, there is percolation of sites x where S~ ~> - / .  

Corollary 3. Take h = 0, 0 = 0, and f(So) = cos q~o in Theorem 2 and 
use the correlation inequality 

(cos ~bo>sc <~ 0 (4.4) 

for any boundary condition Sc where cos ~b~ ~<0, and sin ~b~ arbitrary. 
Theorem 2 then yields percolation of sites where cos ~b~/> 0 in any Gibbs 
state where <cos q~o> > 0. 

822/'48/5-6-20 
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To prove (4.4), first change all ~bx into -(~b~-rc). This leaves the 
interaction invariant and changes the boundary condition from cos q~x ~< 0 
to cos ~bx ~> 0, still leaving sin ~b~ unchanged, with an arbitrary sign. In these 
new variables we must show that (cos~bo)sc>~0. If all sin~b x on C were 
positive, this would just be the first Griffiths inequality for rotators/22) 
However, (cos ~b0)sc with arbitrary fields in the sin ~b x direction is larger 
than the one with all those fields replaced by their absolute value [ine- 
quality (A.4) in Ref. 22]. This proves (4.4). 

Proof  o f  T h e o r e m  3. We start the proof by introducing some 
definitions and notation. Let V and A be cubes centered around the origin, 
[V[ >> IAI. Let C(0)-= the cluster containing the origin and define the event 

Cv = _ {~e (2: C(O)c~6Vva ~ }  (4.5) 

Let Fv be the collection of sets B such that B ~ V: 0 ~ B, B is connected, 
and B c~ 6 V:A ~ .  

Define for a particular K~ Fv the event 

E K -  {S~s S~>>,h, Vx~K and Sx<h, Vx~OvK} (4.6) 

where 

OvK=_SKc~ V= {x~ V~K: qy~ K, I x -  y[ = 1} 

Lemma 1. (a) Cv is the disjoint union of the events EK, i.e., 

Cv= ~ EK 
K~ FV 

and if K, K' ~Fv and K:~ K', then E ~ m E K , = ~ .  

(b) Prob(Cv) >/P~(h) for all V and Prob(EK)> 0 for all KEFv,  atl 
finite V. 

Proof. If C(0) intersects the boundary of V, then the intersection of 
C(0) with V contains a set K ~ F v  and EK occurs. If EK occurs for some 
K~ Fv then K is a subset of C(0) and Cv occurs. The events EK are disjoint 
by definition. Part (b) is obvious. 

Before continuing with the rest of the proof, we have to introduce 
(very briefly and incompletely) some elements of Newtonian potential 
theory on Z d, i.e., electrostatics on the lattice. Details can be found in 
Spitzer's book. (17) It is here that the restriction to the harmonic crystal in 
Z 3 enters. 

A function f (x) ,  x ~ Z '~, is harmonic in a region M e  Z d of space if 
- A f ( x ) = O  for all x~M.  [4 is defined in (3.12.] The (normalized) 
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covariance Cox/Coo for the harmonic crystal is a harmonic function for x r 0, 
which takes the value 1 for x = 0  and decays to zero as ]xf~'oo. More 
generally we can construct a function )cA that is identically one on a set 
A e Z d, harmonic off A, and decaying to zero at infinity, fa(x) is called the 
eqilibrium potential of A. It is also the probability for a simple random walk 
starting at position x to hit the region A. We have the following decom- 
position: 

fA(X) = ~ c~,e~ + qA (4.7) 
y ~ A  

For any finite, nonempty set A, qA is zero and the {eA; y ~ A } in (4,7) are 
the unique solution to the set of linear equations 

~, cx~,ey= 1 for all x e A  (4.8) 
v ~ A  

If we define the matrix CA to be the covariance matrix (which is positive 
definite) restricted to the set A, then it is trivial that 

A__ e ~ -  ~ (CA1)~: for all y~A (4.9) 
2 ~ A  

is the solution of (4.8). For infinite A, qA is either one or zero, depending 
only on the set A. 

The {eJ } are called the equilibrium charges of A, and fa  satisfies 
Poisson's equation: 

--AfA(x)=e 2 for all x s Z  a (4.10) 

From this we see that the charges are nonzero (and positive) only at the 
boundary of the region A, i.e., 

Ar  if yc6A ey 
(4.11) 

eyA=0, if ~vr 

and actually, 

%,~A---- %A for all y (4.12) 

(In the context of random walks, the charges on A correspond to escape 
A is the probability of never visiting A after leaving probabilities, i.e., ep 

position y e A.) The total equilibrium charge of a finite set A is called the 
capacity, Cap(A), of the set A: 

A Cap(A) (4.I3) Z ex --~ 
xEA 
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For infinite A, one defines Cap(A)=  oo. It is well known (~7~ that the 
capacity is a monotone set function, i.e., 

if A c B ,  then Cap(A)~<Cap(B) (4.14) 

The capacity depends on, besides the volume, also the "shape" of the set. It 
measures in a way the "thinness" of a set: a long, thin set has a far larger 
capacity to absorb charge than rounder bodies of the same volume. (In the 
probabilistic analog: a thin or sparse set A provides a better opportunity 
for the random walk to escape from A than other sets of the same 
cardinality. (~7)) These considerations are reflected in the inequalities 

where 

IAr 
M>~ ~>m (4.15) 

Cap(A) 

m=_Min ~ Cxy , M= Max ~ Cxy 
y ~ A  x ~ A  y e a  x ~ A  

This is a direct consequence of the definition (29) and (27). In other words, 
for sets A that are "homogeneous" enough (m ~ ~,~ ~ M), Cap(A) ~ ]AI/XA. 

The potential f,4(x) is pointwise increasing as the set A grows in size. 
This is a consequence of the principle of domination for harmonic 
functions. It is also intuitively clear from the interpretation of the potential 
as a hitting probability (see above) that fA depends on the shape of A. 
How "thick" an infinite set A has to be in order for f~(x) to be equal to 1, 
for all x, is obviously dimension-dependent. In d =  2, a random walker 
returns to the origin of the lattice with probability one. Therefore, in d =  3 
we may expect that fA(X)= 1 for all x if A is an infinite, connected set, 
since it is already the case for a coordinate axis of Z 3. A precise criterion 
was given by It6 and McKean, (18) Spitzer, (17) and others. It goes under the 
name: 

W i e n e r ' s  T e s t  (It6, McKean). (~8'~7/ Given an infinite set A c Z 3, 
let A n denote the intersection of A with the spherical shell of points x such 
that 2~< Lxl ~<2 n+l. Then fA(X)= 1 for all x if and only if 

T[A? = ~  2 -n Cap(An)= +oo (4.16) 
1 

In other words, T[A] is the correct "measure" of the influence of the 
"conductor" A on the value of the potential in distant regions of space. 

I . e m m a  2 (Potential problem). (a) (Sx[Ex)  is a harmonic 
function outside K ~. 
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(b) For  some # > 0  and for all A, we can take V= V(A) large enough 
so that 

where 

ProoL 

1 
IAJ ~ fx(x)~Iz for all KeFv 

x E A  

(a) Let xeZa\K.. Using the DLR equation, (23) we have that 

(S:~IEK) = ( ( S x ) ( S y ;  y is n.n. to x)lEx) 

1 
(Sx)(Sy; y is n.n. to x ) =  2-d ly ~-xl =2 Sy 

is the expectation value of Sx if one specifies the values of its 2d nearest 
neighbors. This implies that 

-A(SxlE,~) =0 

(b) The proof of the l t6 -McKean  result ~8~ above implies that, as the 
set A grows (in the sense of inclusion) such that T [ A ] ~ ,  then the 
function f~ ]" 1. Therefore, since the set A is a fixed and bounded region in 
Z 3, it is sufficient to show that TEK] can be made arbitrary large for all 
KEFv and V large enough. One has thus to verify condition (4.16) for an 
arbitrary infinite connected set A in d =  3. We will do this in two steps: first 
we reduce the volume of A and then we show that no set A is worse than a 
straight line. By the monotonicity property (4.14), T[A] >~ T[a] where 
a c A is obtained by keeping (in a nonunique but arbitrary fashion) for 
each i = 0, 1, 2,... only one point in the intersection of A with the ith shell = 
{y: y is on the boundary of the cube of size 2@ The volume la~l = 2 ~, and 
by (4.15) 

Cap(a,,) I> 2~/Mn (4.17) 

where 

M.  - Max ~, Cxy (4.18) 
X E a n  

y ~ a n  

Fix x ~ a, .  Then order y ~ an, y r x, according to their distance from x. 
The kth point in that order is at a distance at least k from x. Thus, using 
the second inequality in (3.13), we get 

2n 1 

Mn ~< const . ~  ~ ~< const ' ,  n (4.19) 
k =  = 1  
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The upper bound is what we would get for M,  if a,  was a straight line; see 
also (3.16). Combining the inequalities (4.17)-(4.19) we thus get that 
T[A] >~ const-~2 (l/n), hence the desired divergence. 

I . emma 3 (Stability estimate). For h < oc large enough there is a 
constant c > 0 such that for all V large enough 

(Sx fEK)>~c  foral l  xeOK, all K e F v  

Proof. The boundary OK splits the space into two separate regions: 
K and Zd\K. Therefore, since the interaction is nearest neighbor, and 
forgetting about the constraint EK for the moment, the induced measure 
P(dSoK ) on {Sx; x~OK} is a product of two Gaussian measures: 

where the sums run over x, y e 0K; N = normalization (while its real value 
wilt change from place to place in the arguments below, we still use the 
same notation); exp(~�89 is what is obtained by "integrating 
out" the variables S_ for z e Z3\K ", and includes also the self-interaction of 
OK; and e x p ( - � 8 9  bx.~s~,s,) is what is obtained by "integrating out" the 
variables S~ for z e K. 

The set K =  IntOK and the Hamiltonian (3.14) is invariant under shifts 
Sx ~ S~ + k, for all x. Hence, (b~y) is also shift-invariant: 

Zb.,yS~Sy=Zb~y(S.~+k)(S~,+k), for all k e R  (4.20) 

We observe that by (4.9) the sum 

OK ~ (axy+bxy)=e~=e~ =-e~ 
Y 

is exactly the charge at xeOK associated to the potential fx=f~)x, as 
defined in (4.7). The last equality is obtained by observing that both 
functions equal one on the set OK, vanish at infinity, and are both 
harmonic off OK (because x _  0 if x ~ K). e x - -  

We rewrite 

E a~ysxsv: ~ a,,(s~ + k)(S~, + k) - 2k E a~,S~- k ~ Z ~ 

: E a~y(S~ + k)(S, + k)-- Zk E exS~ 

= ~ ax~.(S~ + k)(S~, + k) - 2 Z k~S~ - k 2 Cap(0K) (4.21) 
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In the last equality we used (4.20) and the definition (4.13) of capacity of a 
set, and we denote k~-  ke~. 

Fix an arbitrary t />0 .  We know from the potential problem 
(Lemma 2 (17)) applied to the set K that the potential fx  generated by the 
charges {ex;xeR} is close to one in the surroundings of K, for a 
sufficiently large, connected set K. By (4.10) this is equivalent to saying that 
the charges have to vanish identically: e~ ~< r/for all x as long as K is large 
enough. 

Using the F K G  inequality, (2~ one has the bound: for x e c~K 

(S~ lEE) >1 (Sx)(h) (4.22) 

where ( - ) ( h )  is the measure obtained by setting S,  = h for all x e K, and 
conditioned on Sx < h, for all x. Explicitly, 

with 

1 f P,,(a&~). [ [  I(s~ < h) (.5(h)_=~ 
aK 

1 ~ (sx_ h)2] Pl,(dSeK)=- ~dSoKexp [--~ ~ axySxSy-~ ~ (4.23) 

i.e., the original (Gaussian) measure, but where S~ = h for all z e K. Perfor- 
ming a change of variables S~ = h-S~, in (4.22) and using (4.23) and (4.21) 
with k = - h ,  we get 

(Sx]EK)>~h-~ Po(dSoK)SxHI(S,.>O)exp hySy 
OK 

if ( ) >~ h - ~ Po(dS~K) S~ 1-[ l(Sy > 0) exp ~ hqSy (4.24) 
OK \ ~ K  / 

where we used the F K G  inequality again and ex < q. The presence of the 
positive magnetic field t/ (which is small) comes from the coupling with 
infinity, which was at zero potential. If q were zero, then the second term to 
the right of the inequality (4.24) would just be the average value of S~ for a 
site x at the boundary of a set K where all the spins are frozen at S~ = 0, 
z ~ K, with respect to the Gaussian measure perturbed by the l-I I(Sy > O) 
factor. 

Due to the presence of the mass (and since a~y is positive definite), we 
are in a position to apply Ruelle's superstability estimate (9) with interaction 

1 ~, a x y S v S y  1 >~ 1 u(&K) - -~ + ~ Z s~ ,. ~ Z s~ 
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and single spin measure 

2(dS) -= eh~SI(S> O) dS 

Combining the Schwartz inequality 

~K OK 

with (4.24), we get as final bound (with const < 0% and A >0 ,  uniform 
in K) 

(S~lEx)>>.h_const. 2(dS) S2exp( As2) 

i> h -- const - O(1/~/A) 

>~c 

for some h ~> c > 0 if h is large enough and q small enough. The bound is 
uniform in x s OK, Ks  Fv for all V large enough. 

Conclusion of Proof  of T h e o r e m  3. Lemma 2(a) says that 
(Sx h EK) is a harmonic function in Zd\K2. Lemma 3 says that this function 
is larger than a strictly positive constant e for all x s K', for h large enough, 
and zero at infinity. Hence, by the principle of domination (17) for harmonic 
functions 

(Sx[EK) >/cfR(x), for all x s Z  a (4.25) 

For d -  3 we can apply Lemma 2(b) and combine it with (4.25): there is a 
constant/ff > 0 such that for all A, we can choose V= V(A) large enough 
such that 

1 
/I'A---7 (SAIEK) >~ fi' for all Ks Fv (4.26) 

By Lemma 1, 

(S])>~ (S]I(Cv))= ~ (S]I(EK)) = ~ (S][EK) Prob(Ex)  
K c F v  K ~ F v  

and by the Schwartz inequality, 

>~ ~ (SALEK)2prob(EK)>~ ~ fiZIA[2Prob(EK) 
K e F v  K ~ F v  
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where we used (4.26) for the last inequality. Now, by Lemma 1 again, 

=/~2 [AI2 Prob(Cv) >~/~2 ]At2 P~(h) 

Since this chain of inequalities holds for all A and ( [ ( l / f  A I) SA ]2 )  ~ 0, for 
A I"Z 3, we obtain that P ~ ( h ) = 0 .  

This completes the proof. 

5. C O N C L U D I N G  R E M A R K S  

5.1. Extensions to O t h e r  D imensions  

There exists a more general version of Wiener's test, (18) valid for all 
d >  2, which is obtained by replacing T[A] in (4.16) by 

Ta[A] - ~  2 ~(2 J> Cap(A~,) 
1 

The main reason our result is restricted to d = 3  is that we use, in 
Lemma 2, the fact that T3[A] = oo for any infinite, connected set A. This 
fails in d =  4, as can be seen explicitly by considering the set A = a lattice 
axis. In d = 4 ,  only "higher dimensional" sets (like a plane) will have 
Tj[A ] = oo. However, for sets "like" a line, we can exclude percolation by 
using the bound (3.15). More precisely, if we fix some K <  oo, then there 
will be an h so that there is no infinite, connected set C on which Sx > h, 
such that ~(c<~K. Infinite "one-dimensional" sets in d =  4 will satisfy this 
last condition. However, there are sets C with infinite C-susceptibility Xc 
and T(C) < 0% so that we cannot exclude percolation. 

5.2. The  V o t e r  M o d e l  

In Ref. 19 the threshold percolation density Pc was investigated for 
another strongly correlated lattice system, the Voter model. As in the 
massless harmonic crystal, the pair correlation function of the system 
decays in three dimensions as 1/Ix[. However, there is an additional com- 
plication: the system does not satisfy the Markov property. One can no 
longer rely on methods of equilibrium statistical mechanics (the probability 
measure is characterized entirely by. being stationary with respect to 
a certain type of stochastic time evolution). Therefore, the arguments 
presented in our proofs do not work for this system. The numerical work in 
Ref. 19 suggests that there is a nontrivial percolation transition, with 
pc,~ 0.16 in d = 3 .  
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